

NutriFreez® D10 Cryopreservation Medium

Simplifying Progress

SVISCISVS

Discover Performance

Table of Content

NutriFreez [®] D10 Cryopreservation Medium3
Human Mesenchymal Stromal Cells4
The Ottawa Hospital Research Institute10
Human Pluripotent Stem Cells12
WiCell Research Institute16
Primary Cells & Various Cell Lines

under cGMP

conditions

and animal

component-free

NutriFreez® D10 Cryopreservation Medium

(DMF) available

3

Methylcellulose and 10% DMSO

Human Mesenchymal Stromal Cells Human Pluripotent Stem Cells Primary Cells & Various Cell Lines Back to Table of Contents

Proliferation and Morphology Comparison Post Cryopreservation of Human Mesenchymal Stromal Cells in NutriFreez® D10 Medium.

NutriFreez® D10 Medium

38,000 cells/cm² Normal morphology

Cryostor® CS10

~4,000 cells/cm² Abnormal morphology

STEM-CELLBANKER®

29,000 cells/cm² Normal morphology

Viability and Recovery Comparison of Human Mesenchymal Stromal Cells Following Cryopreservation in NutriFreez® D10 Medium.

High Viability

≥ 95% viability when compared to other commercial serum-free solutions direct post-thaw

Superior Recovery

More cells in less time at 3 days post-thaw with a >7-fold cell increase

Viability Comparison of Human Mesenchymal Stem Cells Following Long-Term Cryopreservation in NutriFreez® D10 Medium.

High Viability (Long-Term)

hMSC-BM show \geq 91% viability after 3-years of cryopreservation

High Viability (Long-Term)

hMSC-AT show \geq 94% viability after 5-years of cryopreservation

Viability Comparison of Various Human Mesenchymal Stromal Cells Post Cryopreservation in NutriFreez® D10 Medium.

High Viability

MSCs derived from adipose tissue (AT), bone marrow (BM), and dental pulp (DP) show \ge 91% viability after 3 days post thaw compared to direct post thaw

Morphology Comparison of Various Human Mesenchymal Stromal Cells Post Cryopreservation in NutriFreez® D10 Medium.

Normal Morphology

MSCs derived from adipose tissue (AT), bone marrow (BM), and dental pulp (DP) exhibit normal morphology after 3 days post thaw compared to direct post thaw

hMSC-AT

hMSC-BM

hMSC-DP

NutriFreez [®] D10	Human Mesenchymal	Human Pluripotent	Primary Cells &	Back to Table
Cryopreservation Medium	Stromal Cells	Stem Cells	Various Cell Lines	of Contents

Various Human Mesenchymal Stromal Cells Maintain Multipotency Marker Expression via Facs Analysis Following Cryopreservation in NutriFreez[®] D10 Medium.

Clinical Applications

The Ottawa Hospital Research Institute, Canada

The Study: Clinical trials for Septic Shock Patients

The Results:

When compared to homebrew and serum-free competitor freezing solutions, primary human mesenchymal stem cells (from healthy donors) cryopreserved in NutriFreez® D10 Cryopreservation Medium exhibited the best post-thaw viability and recovery rates in addition to increased cell attachment and growth performance.

Data Acknowledgment:

Thank you to Prof. Shirley H.J. Mei and research team Yuan Tan and Mahmoud Salkhordeh, Regenerative Medicine Program, Ottawa Hospital Research Institute.

Clinical Applications

The Ottawa Hospital Research Institute, Canada

Superior Viability

Comparison of cell viability over homebrew and competitor freezing solutions by Trypan blue exclusion and Annexin V/PI staining FACS analysis (direct post thaw)

Superior Recovery

Comparison of cell recovery over homebrew and competitor freezing solutions at 6 days post thaw

NutriFreez® D10 Medium

Competitor

Reference: Salkhordeh, et. al. May 2018. Evaluation of different cryopreservation agents for mesenchymal stem cell as final study product. Cytotherapy.

Reference: Salkhordeh, et. al. May 2018. Evaluation of different cryopreservation agents for mesenchymal stem cell as final study product. Cytotherapy.

Primary Cells & Various Cell Lines Back to Table of Contents

Human Embryonic Stem Cells Exhibit Superior Recovery and Morphology Post Cryopreservation in NutriFreez® D10 Medium.

Day 4

Back to Table of Contents

Human Embryonic Stem Cells Exhibit Superior Recovery and Morphology Post Cryopreservation of Cell Colonies in NutriFreez® D10 Medium.

H1 hESC BGO1V/hOG (hESC) BGO1V/hOG Day 1 GFP Day 2-4 GFP

13

Back to Table of Contents

Human Embryonic Stem Cells Maintain Trilineage Differentiation Potential Post Cryopreservation in NutriFreez® D10 Medium.

High Viability

H1 hESC identified by analysis of embryoid bodies spontaneously formed for 18 days, histological sections stained with H&E

EC=neural rosettes, ME=primitive vessels, END=primitive parenchyma (100X)

Single Cell Recovery, Morphology, and Attachment of Human Pluripotent Stem Cells Post Cryopreservation in NutriFreez® D10 Medium.

High Recovery

ACS-1019 cells demonstrate high recovery and attachment

Day 2

Day 3

Day 4

Third-Party Validation Studies

WiCell Research Institute, USA

The Study:

Validation study testing the ability to appropriately cryopreserve hPSCs without affecting the undifferentiated state and expansion rate of hPSCs post thaw.

The Results:

Study confirmed no negative effect on cell proliferation, differentiation, morphology, or karyotype was noted for human pluripotent cells cryopreserved using NutriFreez® D10 Medium* (lot 1617350). NutriFreez® D10 Medium was noted to have met all WiCell requirements for quality and when used as directed, is appropriate for use in pluripotent cell culture cryopreservation.

* Please note that this test was conducted under the product brand name CryoStem[™] Freezing Medium. The NutriFreez[®] brand name replaces CryoStem[™] and is the same formulation depicted here in this study.

Third-Party Validation Studies

WiCell Research Institute, USA

Positive Cell Proliferation and Expression

Oct3/4 and SSEA4 marker expression exceeds \geq 85% positive for undifferentiated PSCs.

Reference: WiCell Research Institute Lot Qualification Report. January 2017. bioind.com.

Normal Karyotype

No clonal abnormalities were detected at the band resolution of 500-550. This is a normal karyotype.

Reference: WiCell Research Institute Lot Qualification Report. January 2017. bioind.com.

Viability Comparison of Human Peripheral Blood Mononuclear Cells Following Cryopreservation in NutriFreez® D10 Medium.

High Viability

PBMCs show \geq 91% viability when compared to cells cryopreserved in homebrew freezing solutions

Viability and Morphology of Human Umbilical Vein Endothelial Cells Following Cryopreservation in NutriFreez® D10 Medium.

High Viability and Yield

HUVECs show \geq 94% viability and high cell yield post thaw

Normal Morphology

Normal morphology of HUVECs 4 days post thaw; cells cultured in EndoGo™ XF Medium

100X

Primary Cells & Various Cell Lines Back to Table of Contents

Human Umbilical Vein Endothelial Cells Maintain Surface Markers via Facs Analysis Post Cryopreservation in NutriFreez® D10 Medium.

Typical Markers

HUVECs were harvested and labeled with antibodies against endothelial cell surface markers CD31, CD144 and CD90

Viability and Morphology of Human Dermal Microvascular Endothelial Cells Following Cryopreservation in NutriFreez® D10 Medium.

High Viability and Yield

HDMECs ≥ 96% viability and high cell yields post thaw

Normal Morphology

Normal morphology of HDMECs 4 days post thaw; cells cultured in EndoGo[™] XF Medium

100X

NutriFreez® D10	Human Mesenchymal	Human Pluripotent	Primary Cells &	Back to Table
Cryopreservation Medium	Stromal Cells	Stem Cells	Various Cell Lines	of Contents

Viability Comparison of Various Cell Lines Following Long-Term Cryopreservation in NutriFreez® D10 Medium.

^{- 6} months - 4 years

Attachment and Viability Comparison of Various Cell Lines Following Cryopreservation in NutriFreez® D10 Medium.

Superior Attachment

High Viability

Germany

Sartorius Stedim Biotech GmbH August-Spindler-Strasse 11 37079 Goettingen Phone +49 551 308 0

USA

Sartorius Stedim North America Inc. 565 Johnson Avenue Bohemia, NY 11716 Toll-Free +1 800 368 7178

Israel

Biological Industries Israel Beit Haemek Ltd. 2511500 Kibbutz Beit Haemek Phone: 972 4 9960595

For further contacts, visit www.sartorius.com

Specifications subject to change without notice. © 2021 Biological Industries Israel Beit Haemek Ltd., 2511500 Kibbutz Beit Haemek, Israel